Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 80(10): 2226-2238, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615097

RESUMO

BACKGROUND: Preeclampsia is a complex syndrome that includes maternal vascular dysfunction. Syncytiotrophoblast-derived extracellular vesicles from preeclampsia placentas (preeclampsia-STBEVs) were shown to induce endothelial dysfunction, but an endothelial transmembrane mediator is still unexplored. The LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is a transmembrane scavenger receptor that can cause endothelial dysfunction, and its expression is increased in the endothelium of preeclampsia women. In this study, we hypothesized that LOX-1 mediates the effects of preeclampsia-STBEVs on endothelial function. METHODS: Preeclampsia-STBEVs were collected by perfusion of placentas from women with preeclampsia and in vitro and ex vivo endothelial cell function were assessed. RESULTS: In human umbilical vein endothelial cells, inhibition of LOX-1 with LOX-1 blocking antibody (TS20) reduced the uptake of preeclampsia-STBEVs (61.3±8.8%). TS20 prevented the activation of ERK (extracellular signal-regulated kinase, a kinase downstream of LOX-1) and reduced the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells; 21.1±8.0%) and nitrative stress (23.2±10.3%) that was induced by preeclampsia-STBEVs. Vascular function was assessed by wire myography in isolated mesenteric arteries from pregnant rats that were incubated overnight with preeclampsia-STBEVs±TS20. TS20 prevented endothelium-dependent vasodilation impairment induced by preeclampsia-STBEVs. Nitric oxide contribution to the relaxation was reduced by preeclampsia-STBEVs, which was prevented by TS20. Superoxide dismutase or apocynin, an inhibitor of NOX (nicotinamide adenine dinucleotide phosphate oxidase), restored the impaired endothelium-dependent vasodilation in arteries exposed to preeclampsia-STBEVs. CONCLUSIONS: Taken together, our findings demonstrate that LOX-1 mediates the endothelial dysfunction induced by preeclampsia-STBEVs. Our study further expands on the mechanisms that may lead to adverse outcomes in preeclampsia and proposes LOX-1 as a potential target for future interventions.


Assuntos
Vesículas Extracelulares , Pré-Eclâmpsia , Doenças Vasculares , Gravidez , Humanos , Feminino , Animais , Ratos , Células Endoteliais , Endotélio , Receptores de LDL Oxidado , Lectinas
2.
Reprod Sci ; 30(6): 1994-1997, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36574145

RESUMO

Gestational hypoxia is a major contributor to fetal growth restriction (FGR) and perinatal morbidity and mortality and has been closely linked to the activation of the unfolded protein response (UPR) in the placenta. Recent studies on adverse pregnancy conditions show differential adaptive responses in pregnancies carrying male or female fetuses. Here, we use an established rat model of hypoxic pregnancy and FGR to test the hypothesis that chronic hypoxia promotes sexually dimorphic activation of the placental UPR. Our data showed that gestational hypoxia increased glucose regulatory protein 78 (GRP78) expression in male placentae, increased activating transcription factor 6 activation (ATF6) in female placentae, and did not induce changes in other UPR markers. In addition, gestational hypoxia reduced fetal weight only in males and ATF6 activation correlated with an increase in the fetal crown-rump-length/body weight ratio only in females. These results suggest sex-specific divergence in the placental adaptive response to gestational hypoxia, which may account for the sexual dimorphism observed in placental function and pregnancy outcomes in complicated pregnancies.


Assuntos
Placenta , Complicações na Gravidez , Humanos , Gravidez , Feminino , Masculino , Ratos , Animais , Placenta/metabolismo , Roedores , Caracteres Sexuais , Resultado da Gravidez , Retardo do Crescimento Fetal/metabolismo , Resposta a Proteínas não Dobradas , Complicações na Gravidez/metabolismo , Hipóxia/metabolismo
3.
Biosci Rep ; 42(12)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36408626

RESUMO

Preeclampsia (PE) is a pregnancy syndrome characterized by new-onset hypertension and end-organ dysfunction. The pathophysiology of PE remains undetermined, but it is thought that maternal vascular dysfunction plays a central role, potentially due, in part, to the release of syncytiotrophoblast-derived extracellular vesicles (STBEVs) into the maternal circulation by a dysfunctional placenta. STBEVs from normal pregnancies (NP) impair vascular function, but the effect of PE STBEVs (known to differ in composition with elevated circulating levels) on vascular function are not known. We hypothesized that PE STBEVs have more detrimental effects on vascular function compared with NP STBEVs. STBEVs were collected by perfusion of placentas from women with NP or PE. Mesenteric arteries from pregnant rats were incubated overnight with NP or PE STBEVs, and vascular function was assessed by wire myography. NP and PE STBEVs impaired endothelial function, partially by reducing nitric oxide (NO) bioavailability. Incubation of human umbilical vein endothelial cells with NP and PE STBEVs increased nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB) activation, reactive oxygen species, nitrotyrosine levels, and reduced NO levels. However, PE STBEVs increased NF-κB activation and nitrotyrosine levels to a lesser extent than NP STBEVs. Taken together, no greater impact of PE STBEVs compared with NP STBEVs on endothelial function was found. However, the impaired vascular function by PE STBEVs and increased levels of STBEVs in PE suggest PE STBEVs may contribute to maternal vascular dysfunction in PE. Our study further expands on the potential mechanisms that lead to adverse outcomes in PE and provides potential targets for future interventions.


Assuntos
Vesículas Extracelulares , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Ratos , Animais , NF-kappa B , Vesículas Extracelulares/fisiologia , Trofoblastos , Óxido Nítrico , Células Endoteliais da Veia Umbilical Humana
4.
Vascul Pharmacol ; 143: 106953, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35074481

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease characterized by severe and persistent fatigue. Along with clinical studies showing endothelial dysfunction (ED) in a subset of ME/CFS patients, we have recently reported altered ED-related microRNAs in plasma from affected individuals. Inadequate nitric oxide (NO), mainly produced by the endothelial isoform of nitric oxide synthase (eNOS) in endothelial cells (ECs), is a major cause of ED. In this study, we hypothesized that plasma from that cohort of ME/CFS patients induces eNOS-related ED in vitro. To test this, we cultured human umbilical vein endothelial cells (HUVECs) in the presence of plasma from either ME/CFS patients (ME/CFS-plasma, n = 11) or healthy controls (HC-plasma, n = 12). Then, we measured the NO production in the absence and presence of tyrosine kinase and G protein-coupled receptors agonists (TKRs and GPCRs, respectively), well-known to activate eNOS in ECs. Our data showed that HUVECs incubated with ME/CFS-plasma produced less NO either in the absence or presence of eNOS activators compared to ones in presence of HC-plasma. Also, the NO production elicited by bradykinin, histamine, and acetylcholine (GPCRs agonists) was more affected than the one triggered by insulin (TKR agonist). Finally, inhibitory eNOS phosphorylation at Thr495 was higher in HUVECs treated with ME/CFS-plasma compared to the same treatment with HC-plasma. In conclusion, this study in vitro shows a decreased NO production in HUVECs exposed to plasma from ME/CFS patients, suggesting an unreported role of eNOS in the pathophysiology of this disease.


Assuntos
Síndrome de Fadiga Crônica , MicroRNAs , Estudos de Coortes , Células Endoteliais , Síndrome de Fadiga Crônica/tratamento farmacológico , Humanos , Óxido Nítrico
5.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165948, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866635

RESUMO

Gestational diabetes mellitus (GDM) is a disease of pregnancy that is associated with d-glucose intolerance and foeto-placental vascular dysfunction. GMD causes mitochondrial dysfunction in the placental endothelium and trophoblast. Additionally, GDM is associated with reduced placental oxidative phosphorylation due to diminished activity of the mitochondrial F0F1-ATP synthase (complex V). This phenomenon may result from a higher generation of reactive superoxide anion and nitric oxide. Placental mitochondrial biogenesis and mitophagy work in concert to maintain cell homeostasis and are vital mechanisms securing the efficient generation of ATP, whose demand is higher in pregnancy, ensuring foetal growth and development. Additional factors disturbing placental ATP synthase activity in GDM include pre-gestational maternal obesity or overweight, intracellular pH, miRNAs, fatty acid oxidation, and foetal (and 'placental') sex. GDM is also associated with maternal and foetal hyperinsulinaemia, altered circulating levels of adiponectin and leptin, and the accumulation of extracellular adenosine. Here, we reviewed the potential interplay between these molecules or metabolic conditions on the mechanisms of mitochondrial dysfunction in the foeto-placental unit in GDM pregnancies.


Assuntos
Diabetes Gestacional/metabolismo , Mitocôndrias/metabolismo , Doenças Placentárias/metabolismo , Animais , Diabetes Gestacional/patologia , Feminino , Humanos , Doenças Placentárias/patologia , Gravidez
6.
Biochim Biophys Acta Mol Basis Dis ; 1866(2): 165370, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660686

RESUMO

Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hyperglycaemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular endothelium from GDM pregnancy show increased maximal l-arginine transport capacity via the human cationic amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase (eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors. A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS activity (i.e. the Adenosine/l-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these alterations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foetoplacental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their receptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and insulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review focuses on the pathophysiology of insulin and adenosine receptors and l-arginine and adenosine membranes transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.


Assuntos
Adenosina/metabolismo , Diabetes Gestacional/metabolismo , Endotélio Vascular/metabolismo , Insulina/metabolismo , Receptores de Adipocina/metabolismo , Adipocinas/sangue , Antígenos CD/metabolismo , Arginina/metabolismo , Transporte Biológico/fisiologia , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Endotélio/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Feminino , Proteínas Ativadoras de GTPase , Humanos , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/metabolismo , Placenta/metabolismo , Gravidez , Isoformas de Proteínas , Receptor de Insulina/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais
7.
Placenta ; 86: 35-44, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31345420

RESUMO

OBJECTIVE: Pregestational maternal obesity (PGMO) associates with foetoplacental vascular endothelial dysfunction and higher risk for insulin resistance in the neonate. We characterised the PGMO consequences on the insulin response of the human foetoplacental vasculature. METHODS: Umbilical veins were from pregnancies where the mother was with PGMO (body mass index 30-42.3 kg/m2, n = 33) or normal pregestational weight (PGMN) (body mass index 19.5-24.4 kg/m2, n = 21) with total gestational weight gain within the physiological range. Umbilical vein ring segments were mounted in a myograph for isometric force measurements. Primary cultures of human umbilical vein endothelial cells were used in passage 3. Vessel rings and cells were exposed to 1 nmol/L insulin (20 min) in the absence or presence of 100 µmol/L NG-nitro-l-arginine methyl ester (inhibitor of nitric oxide synthase, NOS). RESULTS: Vessel rings from PGMO showed reduced nitric oxide synthase-activity dependent dilation to insulin or calcitonin-gene related peptide compared with PGMN. PGMO associated with higher inhibitor phosphorylation of the insulin receptor substrate 1 (IRS-1) and lower activator phosphorylation of protein kinase B/Akt (Akt). Cells from PGMO also showed lower nitric oxide level and reduced activator serine1177 but increased inhibitor threonine495 phosphorylation of endothelial nitric oxide synthase (eNOS) and saturable transport of l-arginine. HUVECs from PGMO were not responsive to insulin. CONCLUSION: The lack of response to insulin by the foetoplacental endothelium may result from reduced IRS-1/Akt/eNOS signalling in PGMO. These findings may result in higher risk of insulin resistance in neonates to PGMO pregnancies.


Assuntos
Endotélio Vascular/fisiopatologia , Insulina , Obesidade/fisiopatologia , Complicações na Gravidez/fisiopatologia , Veias Umbilicais/fisiopatologia , Adulto , Arginina/metabolismo , Estudos de Casos e Controles , Células Endoteliais/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Recém-Nascido , Proteínas Substratos do Receptor de Insulina/metabolismo , Miografia , Gravidez , Cultura Primária de Células , Adulto Jovem
8.
Mol Aspects Med ; 66: 40-48, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30849412

RESUMO

Obesity and type 2 diabetes mellitus (T2DM) are diseases associated with hypertension and metabolic alterations. A significant group of patients present both obesity and T2DM, a condition defined as diabesity. One of the metabolic features in these conditions is the clinical presentation of insulin resistance. Several tissues, including the liver, skeletal muscle, and vasculature, and patients with T2DM, gestational diabetes, and obesity show insulin resistance. The vascular effect of insulin, including vasodilation, is mainly mediated by the generation of nitric oxide. Several mechanisms are proposed to elucidate the origin of insulin resistance; nevertheless, a common finding is the endothelial dysfunction in these diseases. Endothelial cells from subjects with obesity show reduced nitric oxide synthesis, an effect that is unaltered by insulin. Individuals with T2DM show a misbalance between the synthesis, release, and biological actions of vasodilators and vasoconstrictors such as nitric oxide and endothelin-1. However, whether these mechanisms are involved in the vascular alterations seen in patients with diabesity is unclear. In this review, we discussed the modifications on insulin signalling, insulin resistance in obesity and T2DM, and the reported changes in signalling pathways in diabesity.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Placenta/irrigação sanguínea , Endotélio Vascular/metabolismo , Feminino , Humanos , Resistência à Insulina , Óxido Nítrico/metabolismo , Placenta/metabolismo , Gravidez , Transdução de Sinais
9.
Mol Aspects Med ; 66: 31-39, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664911

RESUMO

Pregnant women that are obese may develop gestational diabetes mellitus (GDM) configuring a new metabolic condition referred to as gestational diabesity. The metabolic alterations seen in gestational diabesity include a combination of an exacerbated pro-inflammatory state and fetoplacental endothelial dysfunction. Also, gestational diabesity associates with supra-physiological extracellular concentration of adenosine in the foetoplacental blood. Since adenosine plays a central role in the inflammatory response in GDM and obesity, it is likely that this nucleoside will play a similar role in gestational diabesity. However, the effect of adenosine in the foetoplacental vasculature in this condition is not yet addressed. Adenosine exerts its biological actions via four adenosine receptors. Activation of A2B adenosine receptors (A2BAR) subtype associates with an anti-inflammatory response in several tissue and diseases. In tissues from pregnant women with GDM, there is an overexpression of A2BAR, and higher mRNA expression of ADORA2B (for A2BAR) was shown to correlate with hyperglycaemia and oxidative stress. A2BAR shows low affinity for adenosine (micromolar) and its activation results in triggering intracellular signalling cascades lowering the inflammatory response. This phenomenon requires a high level of extracellular adenosine in diseases of pregnancy such as GDM or gestational diabesity. In this review, we focused on the role of A2BAR involvement in the biological actions of adenosine on inflammation in the foetoplacental vasculature in gestational diabesity. Some factors including oxidative stress and hypoxia in this phenomenon are discussed.


Assuntos
Diabetes Gestacional/metabolismo , Hiperglicemia/metabolismo , Receptor A2B de Adenosina/metabolismo , Regulação para Cima , Adenosina/metabolismo , Hipóxia Celular , Diabetes Gestacional/genética , Feminino , Humanos , Hiperglicemia/genética , Estresse Oxidativo , Gravidez , Receptor A2B de Adenosina/genética , Transdução de Sinais
10.
Mol Aspects Med ; 66: 49-61, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30472165

RESUMO

Diabesity is an abnormal metabolic condition shown by patients with obesity that develop type 2 diabetes mellitus. Patients with diabesity present with insulin resistance, reduced vascular response to insulin, and vascular endothelial dysfunction. Along with the several well-described mechanisms of insulin resistance, a state of endoplasmic reticulum (ER) stress, where the primary human targets are the adipose tissue, liver, skeletal muscle, and the foetoplacental vasculature, is apparent. ER stress characterises by the activation of the unfolded protein response via three canonical ER stress sensors, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6. Slightly different cell signalling mechanisms preferentially enable in diabesity in the ER stress-associated insulin resistance for adipose tissue (IRE1α/X-box binding protein 1 mRNA splicing/c-jun N-terminal kinase 1 activation), skeletal muscle (tribbles-like protein 3 (TRB3)/proinflammatory cytokines activation), and liver (PERK/activating transcription factor 4/TRB3 activation). There is no information in human subjects with diabesity in the foetoplacental vasculature. However, the available literature shows that pregnant women with pre-pregnancy obesity or overweight that develop gestational diabetes mellitus (GDM) and their newborn show insulin resistance. ER stress is recently reported to be triggered in endothelial cells from the human umbilical vein from mothers with pre-pregnancy obesity. However, whether a different metabolic alteration to obesity in pregnancy or GDM is present in women with pre-pregnancy obesity that develop GDM, is unknown. In this review, we summarised the findings on diabesity-associated mechanisms of insulin resistance with emphasis in the primary targets adipose, skeletal muscle, liver, and foetoplacental tissues. We also give evidence on the possibility of a new GDM-associated metabolic condition triggered in pregnancy by maternal obesity, i.e. gestational diabesity, leading to ER stress-associated insulin resistance in the human foetoplacental vasculature.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Resistência à Insulina , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Feminino , Humanos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Placenta/metabolismo , Gravidez , Transdução de Sinais , Resposta a Proteínas não Dobradas
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3195-3210, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006153

RESUMO

Obesity associates with the endoplasmic reticulum (ER) stress-induced endothelial dysfunction. Pregnant women with pre-pregnancy maternal obesity (PGMO) may transfer this potential risk to their offspring; however, whether ER stress occurs and associates with foetoplacental endothelial dysfunction in PGMO is unknown. We studied the l-arginine transport and nitric oxide (NO) synthesis in human umbilical vein endothelial cells (HUVECs) from women with PGMO or with a normal pre-pregnancy weight. We analysed the expression and activation of the ER stress sensors protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). PGMO associated with lower endothelial NO synthase activity due to increased Thr495-inhibitor and decreased Ser1177-stimulator phosphorylation. However, higher expression and activity of the human cationic amino acid transporter 1 was found. PGMO caused activation of PERK and its downstream targets eukaryotic initiation factor 2 (eIF2α), C/EBP homologous protein 10 (CHOP), and tribbles-like protein 3 (TRB3). Increased IRE1α protein abundance (but not its phosphorylation or X-box binding protein 1-mRNA splicing) and increased c-Jun N-terminal kinase 1 phosphorylation was seen in PGMO. A preferential nuclear location of the activating transcription factor 6 (ATF6) was found in HUVECs from PGMO. All the changes seen in PGMO were blocked by TUDCA but unaltered by tunicamycin. Thus, PGMO may determine a state of ER stress via upregulation of the PERK-eIF2α-CHOP-TRB3 axis signalling in HUVECs. This phenomenon results in foetoplacental vascular endothelial dysfunction at birth.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Fator 6 Ativador da Transcrição/metabolismo , Adulto , Arginina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endorribonucleases/metabolismo , Feminino , Humanos , Óxido Nítrico/metabolismo , Gravidez , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição CHOP/metabolismo , Adulto Jovem , eIF-2 Quinase/metabolismo
12.
Mol Aspects Med ; 60: 81-91, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29175307

RESUMO

Cell-to-cell communication happens via diverse mechanisms including the synthesis, release and transfer to target cells of extracellular vesicles (EVs). EVs include nanovesicles (i.e., exosomes) and microvesicles, including apoptotic bodies. The amount and cargo of released EVs, which consist of microRNAs (miRNAs), mRNA, proteins, DNA, among other molecules, are altered in obesity and diabetes mellitus. EVs from these diseases show with altered cargo including several miRNAs and the enrichment with molecules involved in inflammation, immune efficiency, and cell activation. The role of EVs in obesity regards with adipocytes-released vesicles that may end in a systemic insulin resistance. In diabetes mellitus, the exosomes cargo may signal to transform a normal phenotype into a diabetic phenotype in endothelial cells. The evidence of EVs as modulators of cell function is increasing; however, it is still unclear whether exosomes or microvesicles are a trustable and useful marker for the diagnose or early detection of obesity or diabetes mellitus. In this review, we summarise the reported information regarding EVs involvement in obesity, T1 and T2 diabetes mellitus, and gestational diabetes mellitus. We emphasise the fact that studies addressing a potential effect of obesity or diabetes mellitus on cell function and the severity of the diseases are done in patients suffering simultaneously with both of these diseases, i.e., diabesity. Unfortunately, the lack of information regarding the biological effects and the potential involved mechanisms makes difficult to understand the role of the EVs as a marker of these and perhaps other diseases.


Assuntos
Diabetes Mellitus/metabolismo , Vesículas Extracelulares/metabolismo , Obesidade/metabolismo , Animais , Biomarcadores , Comunicação Celular , Micropartículas Derivadas de Células/metabolismo , Diabetes Mellitus/genética , Exossomos/metabolismo , Humanos , Obesidade/genética , Especificidade de Órgãos
13.
J Diabetes Res ; 2017: 5947859, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104874

RESUMO

Insulin resistance is characteristic of pregnancies where the mother shows metabolic alterations, such as preeclampsia (PE) and gestational diabetes mellitus (GDM), or abnormal maternal conditions such as pregestational maternal obesity (PGMO). Insulin signalling includes activation of insulin receptor substrates 1 and 2 (IRS1/2) as well as Src homology 2 domain-containing transforming protein 1, leading to activation of 44 and 42 kDa mitogen-activated protein kinases and protein kinase B/Akt (Akt) signalling cascades in the human foetoplacental vasculature. PE, GDM, and PGMO are abnormal conditions coursing with reduced insulin signalling, but the possibility of the involvement of similar cell signalling mechanisms is not addressed. This review aimed to determine whether reduced insulin signalling in PE, GDM, and PGMO shares a common mechanism in the human foetoplacental vasculature. Insulin resistance in these pathological conditions results from reduced Akt activation mainly due to inhibition of IRS1/2, likely due to the increased activity of the mammalian target of rapamycin (mTOR) resulting from lower activity of adenosine monophosphate kinase. Thus, a defective signalling via Akt/mTOR in response to insulin is a central and common mechanism of insulin resistance in these diseases of pregnancy. In this review, we summarise the cell signalling mechanisms behind the insulin resistance state in PE, GDM, and PGMO focused in the Akt/mTOR signalling pathway in the human foetoplacental endothelium.


Assuntos
Diabetes Gestacional/metabolismo , Resistência à Insulina/fisiologia , Pré-Eclâmpsia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Feminino , Humanos , Gravidez , Transdução de Sinais/fisiologia
14.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2987-2998, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28756217

RESUMO

Pregnant women diagnosed with gestational diabetes mellitus subjected to diet (GDMd) that do not reach normal glycaemia are passed to insulin therapy (GDMi). GDMd associates with increased human cationic amino acid transporter 1 (hCAT-1)-mediated transport of L-arginine and nitric oxide synthase (NOS) activity in foetoplacental vasculature, a phenomenon reversed by exogenous insulin. Whether insulin therapy results in reversal of the GDMd effect on the foetoplacental vasculature is unknown. We assayed whether insulin therapy normalizes GDMd-associated foetoplacental endothelial dysfunction. Primary cultures of human umbilical vein endothelial cells (HUVECs) from GDMi pregnancies were used to assay L-arginine transport kinetics, NOS activity, p44/42mapk and protein kinase B/Akt activation, and umbilical vein rings reactivity. HUVECs from GDMi or GDMd show increased hCAT-1 expression and maximal transport capacity, NOS activity, and eNOS, and p44/42mapk, but not Akt activator phosphorylation. Dilation in response to insulin or calcitonin-gene related peptide was impaired in umbilical vein rings from GDMi and GDMd pregnancies. Incubation of HUVECs in vitro with insulin (1 nmol/L) restored hCAT-1 and eNOS expression and activity, and eNOS and p44/42mapk activator phosphorylation. Thus, maternal insulin therapy does not seem to reverse GDMd-associated alterations in human foetoplacental vasculature.


Assuntos
Diabetes Gestacional , Endotélio Vascular/metabolismo , Insulina/administração & dosagem , Placenta/metabolismo , Adulto , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Diabetes Gestacional/dietoterapia , Diabetes Gestacional/tratamento farmacológico , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Endotélio Vascular/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Fosforilação/efeitos dos fármacos , Placenta/patologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Mol Aspects Med ; 55: 90-101, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28104382

RESUMO

Adenosine has broad activities in organisms due to the existence of multiple receptors, the differential adenosine concentrations necessary to activate these receptors and the presence of proteins able to synthetize, degrade or transport this nucleoside. All adenosine receptors have been reported to be involved in glucose homeostasis, inflammation, adipogenesis, insulin resistance, and thermogenesis, indicating that adenosine could participate in the process of obesity. Since adenosine seems to be associated with several effects, it is plausible that adenosine participates in the initiation and development of obesity or may function to prevent it. Thus, the purpose of this review was to explore the involvement of adenosine in adipogenesis, insulin resistance and thermogenesis, with the aim of understanding how adenosine could be used to avoid, treat or improve the metabolic state of obesity. Treatment with specific agonists and/or antagonists of adenosine receptors could reverse the obesity state, since adenosine receptors normalizes several mechanisms involved in obesity, such as lipolysis, insulin sensitivity and thermogenesis. Furthermore, obesity is a preventable state, and the specific activation of adenosine receptors could aid in the prevention of obesity. Nevertheless, for the treatment of obesity and its consequences, more studies and therapeutic strategies in addition to adenosine are necessary.


Assuntos
Adenosina/genética , Inflamação/genética , Obesidade/genética , Receptores Purinérgicos P1/genética , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/genética , Diferenciação Celular/genética , Humanos , Inflamação/patologia , Resistência à Insulina/genética , Lipólise/genética , Obesidade/patologia , Termogênese/genética
16.
Front Pharmacol ; 5: 189, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25191269

RESUMO

Adverse microenvironmental stimuli can trigger the endoplasmic reticulum (ER) stress pathway, which initiates the unfolded protein response (UPR), to restore protein-folding homeostasis. Several studies show induction of ER stress during obesity. Chronic UPR has been linked to different mechanisms of disease in obese and diabetic individuals, including insulin resistance (IR) and impaired angiogenesis. Endothelial cell (EC) migration is an initial step for angiogenesis, which is associated with remodeling of existing blood vessels. EC migration occurs according to the leader-follower model, involving coordinated processes of chemotaxis, haptotaxis, and mechanotaxis. Thus, a fine-tuning of EC migration is necessary to provide the right timing to form the required vessels during angiogenesis. ER stress modulates EC migration at different levels, usually impairing migration and angiogenesis, although different effects may be observed depending on the tissue and/or microenvironment. In the context of pregnancy, maternal obesity (MO) induces IR in the offspring. Interestingly, several proteins associated with obesity-induced IR are also involved in EC migration, providing a potential link with the ER stress-dependent alterations observed in obese individuals. Different signaling cascades that converge on cytoskeleton regulation directly impact EC migration, including the Akt and/or RhoA pathways. In addition, ER is the main intracellular reservoir for Ca(2+), which plays a pivotal role during EC migration. Therefore, ER stress-related alterations in Ca(2+) signaling or Ca(2+) levels might also produce distorted EC migration. However, the above findings have been studied in the context of adult obesity, and no information has been reported regarding the effect of MO on fetal EC migration. Here we summarize the state of knowledge about the possible mechanisms by which ER stress and IR might impact EC migration and angiogenesis in fetal endothelium exposed to MO during pregnancy.

17.
Biomed Res Int ; 2014: 917672, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093191

RESUMO

The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG) are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes) and intrauterine programming of insulin resistance (IR). Maternal obesity (MO) and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER) stress-dependent unfolded protein response (UPR). However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response.


Assuntos
Diabetes Gestacional/patologia , Inflamação/patologia , Resistência à Insulina/genética , Obesidade/patologia , Diabetes Gestacional/genética , Estresse do Retículo Endoplasmático/genética , Feminino , Humanos , Recém-Nascido , Inflamação/genética , Insulina/metabolismo , Obesidade/complicações , Obesidade/genética , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...